The function emFrequencies() performs a simple effect analyses of frequencies after an omnibus analysis has been obtained with anofa() according to the ANOFA framework. See Laurencelle and Cousineau (2023) for more.

emFrequencies(w, formula)

Arguments

w

An ANOFA object obtained from anofa();

formula

A formula which indicates what simple effect to analyze. only one simple effect formula at a time can be analyzed. The formula is given using a vertical bar, e.g., " ~ factorA | factorB " to obtain the effect of Factor A within every level of the Factor B.

Value

a model fit of the simple effect.

Details

emFrequencies computes expected marginal frequencies and analyze the hypothesis of equal frequencies. The sum of the Gs of the simple effects are equal to the interaction and main effect Gs, as this is an additive decomposition of the effects.

References

Laurencelle L, Cousineau D (2023). “Analysis of frequency tables: The ANOFA framework.” The Quantitative Methods for Psychology, 19, 173--193. doi:10.20982/tqmp.19.2.p173 .

Examples

# Basic example using a two-factors design with the data in compiled format. 
# Ficticious data present frequency of observation classified according
# to Intensity (three levels) and Pitch (two levels) for 6 possible cells.
minimalExample
#>   Intensity Pitch Frequency
#> 1       Low  Soft         2
#> 2    Medium  Soft         3
#> 3      High  Soft         5
#> 4       Low  Hard         4
#> 5    Medium  Hard         2
#> 6      High  Hard         4

# performs the omnibus analysis first (mandatory):
w <- anofa(Frequency ~ Intensity * Pitch, minimalExample) 
summary(w)
#>                      G df Gcorrected pvalue  etasq
#> Total           2.2530  5         NA     NA     NA
#> Intensity       1.2607  2      1.220 0.5433 0.0593
#> Pitch           0.0000  1      0.000 1.0000 0.0000
#> Intensity:Pitch 0.9923  2      0.866 0.6486 0.1012

# execute the simple effect of Pitch for every levels of Intensity
e <- emFrequencies(w, ~ Pitch | Intensity)
summary(e)
#>                     G df Gcorrected pvalue   etasq
#> Pitch | Low    0.6796  1     0.6630 0.7178 0.10174
#> Pitch | Medium 0.2014  1     0.1964 0.9064 0.03871
#> Pitch | High   0.1113  1     0.1086 0.9471 0.01222

# As a check, you can verify that the Gs are decomposed additively
sum(e$results[,1])
#> [1] 0.9922922
w$results[3,1]+w$results[4,1] 
#> [1] 0.9922922

# Real-data example using a two-factor design with the data in compiled format:
LandisBarrettGalvin2013
#>    provider program obsfreq
#> 1     MC/MA     CBH      19
#> 2     MC/MA     PBH      18
#> 3     MC/MA      BM       2
#> 4        MC     CBH      24
#> 5        MC     PBH      53
#> 6        MC      BM       3
#> 7        MA     CBH      44
#> 8        MA     PBH      57
#> 9        MA      BM       5
#> 10       $P     CBH      20
#> 11       $P     PBH      57
#> 12       $P      BM       3
#> 13       PI     CBH      63
#> 14       PI     PBH     165
#> 15       PI      BM      20

w <- anofa( obsfreq ~ provider * program, LandisBarrettGalvin2013)
anofaPlot(w)

summary(w)
#>                       G df Gcorrected  pvalue  etasq
#> Total            533.19 14         NA      NA     NA
#> provider         206.57  4     206.20 0.00000 0.2720
#> program          307.77  2     307.40 0.00000 0.3576
#> provider:program  18.85  8      18.69 0.01662 0.4909

# there is an interaction, so look for simple effects
e <- emFrequencies(w, ~ program | provider )
summary(e)
#>                      G df Gcorrected   pvalue  etasq
#> program | MC/MA  18.65  2      18.63 0.000931 0.3235
#> program | MC     54.64  2      54.58 0.000000 0.4058
#> program | MA     54.27  2      54.20 0.000000 0.3386
#> program | $P     61.98  2      61.91 0.000000 0.4365
#> program | PI    137.08  2     136.91 0.000000 0.3560

# Example from Gillet1993 : 3 factors for appletrees 
Gillet1993
#>     species location florished Freq
#> 1  Jonagold   Order1       Yes    8
#> 2  Jonagold   Order1        No   14
#> 3  Jonagold   Order2       Yes  102
#> 4  Jonagold   Order2        No  186
#> 5  Jonagold   Order3       Yes   84
#> 6  Jonagold   Order3        No   79
#> 7       Cox   Order1       Yes   16
#> 8       Cox   Order1        No    3
#> 9       Cox   Order2       Yes   58
#> 10      Cox   Order2        No   88
#> 11      Cox   Order3       Yes   22
#> 12      Cox   Order3        No   53

w <- anofa( Freq ~ species * location * florished, Gillet1993)
e <- emFrequencies(w, ~ florished | location )

# Again, as a check, you can verify that the Gs are decomposed additively
w$results[4,1]+w$results[7,1] # B + B:C
#> [1] 34.34593
sum(e$results[,1])
#> [1] 34.34593

# You can ask easier outputs with
summarize(w) # or summary(w) for the ANOFA table only
#>                                    G df Gcorrected   pvalue   etasq
#> Total                      515.97724 11         NA       NA      NA
#> species                     77.55830  1   77.50394 0.000000 0.09811
#> location                   379.25702  2  378.90274 0.000000 0.34722
#> florished                   24.95517  1   24.93768 0.000001 0.03382
#> species:location             3.31188  2    3.29839 0.192205 0.39222
#> species:florished            0.06801  1    0.06777 0.794610 0.12578
#> location:florished           9.39076  2    9.35250 0.009314 0.36712
#> species:location:florished  21.43610  2   21.08372 0.000026 0.41984
explain(w)   # human-readable ouptut ((pending))
#> [1] "method explain not yet done..."