The function 'GRP()' generates random proportions based on a design, i.e., a list giving the factors and the categories with each factor. The data are returned in the 'wide' format.

GRP( props, n, BSDesign=NULL, WSDesign=NULL, sname = "s" )

rBernoulli(n, p)

Arguments

n

How many simulated participants are in each between-subject group (can be a vector, one per group);

p

a proportion of success;

BSDesign

A list with the between-subject factor(s) and the categories within each;

WSDesign

A list with the within-subject factor(s) and the categories within each;

props

(optional) the proportion of succes in each cell of the design. Default 0.50;

sname

(optional) the column name that will contain the success/failure;

Value

GRP() returns a data frame containing success (coded as 1) or failure (coded as 0) for n participants per cells of the design. Note that correlated scores cannot be generated by GRP(); see (Lunn and Davies 1998) . rBernoulli() returns a sequence of n success (1) or failures (0)

Details

The name of the function GRP() is derived from GRD(), a general-purpose tool to generate random data (Calderini and Harding 2019) now bundled in the superb package (Cousineau et al. 2021) . GRP() is actually a proxy for GRD().

References

Calderini M, Harding B (2019). “GRD for R: An intuitive tool for generating random data in R.” The Quantitative Methods for Psychology, 15(1), 1--11. doi:10.20982/tqmp.15.1.p001 .

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb framework with an implementation in R.” Advances in Methods and Practices in Psychological Science, 4, 1--18. doi:10.1177/25152459211035109 .

Lunn AD, Davies SJ (1998). “A note on generating correlated binary variables.” Biometrika, 85(2), 487--490. doi:10.1093/biomet/85.2.487 .

Examples


# The first example generate scorse for 20 particants in one factor having
# two categories (low and high):
design <- list( A=c("low","high"))
GRP( design, props = c(0.1,  0.9), n = 20 )
#>    id    A s
#> 1   1  low 1
#> 2   2  low 0
#> 3   3  low 0
#> 4   4  low 0
#> 5   5  low 1
#> 6   6  low 0
#> 7   7  low 0
#> 8   8  low 0
#> 9   9  low 0
#> 10 10  low 0
#> 11 11  low 0
#> 12 12  low 0
#> 13 13  low 1
#> 14 14  low 0
#> 15 15  low 0
#> 16 16  low 0
#> 17 17  low 0
#> 18 18  low 1
#> 19 19  low 0
#> 20 20  low 0
#> 21 21 high 1
#> 22 22 high 1
#> 23 23 high 1
#> 24 24 high 1
#> 25 25 high 0
#> 26 26 high 1
#> 27 27 high 1
#> 28 28 high 1
#> 29 29 high 1
#> 30 30 high 1
#> 31 31 high 1
#> 32 32 high 1
#> 33 33 high 1
#> 34 34 high 1
#> 35 35 high 1
#> 36 36 high 1
#> 37 37 high 1
#> 38 38 high 0
#> 39 39 high 1
#> 40 40 high 1

# This example has two factors, with factor A having levels a, b, c
# and factor B having 2 levels, for a total of 6 conditions;
# with 40 participants per group, it represents 240 observations:
design <- list( A=letters[1:3], B = c("low","high"))
GRP( design, props = c(0.1, 0.15, 0.20, 0.80, 0.85, 0.90), n = 40 )
#>      id A    B s
#> 1     1 a  low 0
#> 2     2 a  low 0
#> 3     3 a  low 0
#> 4     4 a  low 0
#> 5     5 a  low 0
#> 6     6 a  low 0
#> 7     7 a  low 0
#> 8     8 a  low 0
#> 9     9 a  low 0
#> 10   10 a  low 0
#> 11   11 a  low 0
#> 12   12 a  low 0
#> 13   13 a  low 1
#> 14   14 a  low 0
#> 15   15 a  low 0
#> 16   16 a  low 0
#> 17   17 a  low 0
#> 18   18 a  low 0
#> 19   19 a  low 0
#> 20   20 a  low 0
#> 21   21 a  low 0
#> 22   22 a  low 1
#> 23   23 a  low 0
#> 24   24 a  low 1
#> 25   25 a  low 0
#> 26   26 a  low 0
#> 27   27 a  low 0
#> 28   28 a  low 0
#> 29   29 a  low 0
#> 30   30 a  low 0
#> 31   31 a  low 0
#> 32   32 a  low 0
#> 33   33 a  low 0
#> 34   34 a  low 0
#> 35   35 a  low 0
#> 36   36 a  low 0
#> 37   37 a  low 0
#> 38   38 a  low 0
#> 39   39 a  low 0
#> 40   40 a  low 0
#> 41   41 b  low 0
#> 42   42 b  low 0
#> 43   43 b  low 0
#> 44   44 b  low 1
#> 45   45 b  low 1
#> 46   46 b  low 0
#> 47   47 b  low 0
#> 48   48 b  low 0
#> 49   49 b  low 1
#> 50   50 b  low 0
#> 51   51 b  low 0
#> 52   52 b  low 0
#> 53   53 b  low 0
#> 54   54 b  low 0
#> 55   55 b  low 0
#> 56   56 b  low 0
#> 57   57 b  low 0
#> 58   58 b  low 0
#> 59   59 b  low 0
#> 60   60 b  low 0
#> 61   61 b  low 0
#> 62   62 b  low 1
#> 63   63 b  low 1
#> 64   64 b  low 0
#> 65   65 b  low 0
#> 66   66 b  low 0
#> 67   67 b  low 0
#> 68   68 b  low 0
#> 69   69 b  low 0
#> 70   70 b  low 0
#> 71   71 b  low 0
#> 72   72 b  low 0
#> 73   73 b  low 0
#> 74   74 b  low 0
#> 75   75 b  low 1
#> 76   76 b  low 0
#> 77   77 b  low 0
#> 78   78 b  low 0
#> 79   79 b  low 0
#> 80   80 b  low 0
#> 81   81 c  low 0
#> 82   82 c  low 1
#> 83   83 c  low 0
#> 84   84 c  low 0
#> 85   85 c  low 0
#> 86   86 c  low 0
#> 87   87 c  low 0
#> 88   88 c  low 0
#> 89   89 c  low 0
#> 90   90 c  low 0
#> 91   91 c  low 0
#> 92   92 c  low 0
#> 93   93 c  low 0
#> 94   94 c  low 0
#> 95   95 c  low 0
#> 96   96 c  low 0
#> 97   97 c  low 0
#> 98   98 c  low 1
#> 99   99 c  low 0
#> 100 100 c  low 0
#> 101 101 c  low 1
#> 102 102 c  low 0
#> 103 103 c  low 0
#> 104 104 c  low 0
#> 105 105 c  low 0
#> 106 106 c  low 0
#> 107 107 c  low 1
#> 108 108 c  low 0
#> 109 109 c  low 1
#> 110 110 c  low 0
#> 111 111 c  low 0
#> 112 112 c  low 0
#> 113 113 c  low 1
#> 114 114 c  low 0
#> 115 115 c  low 0
#> 116 116 c  low 0
#> 117 117 c  low 0
#> 118 118 c  low 1
#> 119 119 c  low 0
#> 120 120 c  low 0
#> 121 121 a high 1
#> 122 122 a high 1
#> 123 123 a high 1
#> 124 124 a high 1
#> 125 125 a high 0
#> 126 126 a high 1
#> 127 127 a high 1
#> 128 128 a high 0
#> 129 129 a high 0
#> 130 130 a high 1
#> 131 131 a high 0
#> 132 132 a high 1
#> 133 133 a high 1
#> 134 134 a high 1
#> 135 135 a high 1
#> 136 136 a high 1
#> 137 137 a high 1
#> 138 138 a high 1
#> 139 139 a high 0
#> 140 140 a high 1
#> 141 141 a high 1
#> 142 142 a high 1
#> 143 143 a high 1
#> 144 144 a high 0
#> 145 145 a high 1
#> 146 146 a high 1
#> 147 147 a high 1
#> 148 148 a high 1
#> 149 149 a high 0
#> 150 150 a high 1
#> 151 151 a high 1
#> 152 152 a high 1
#> 153 153 a high 1
#> 154 154 a high 0
#> 155 155 a high 1
#> 156 156 a high 1
#> 157 157 a high 1
#> 158 158 a high 1
#> 159 159 a high 1
#> 160 160 a high 1
#> 161 161 b high 1
#> 162 162 b high 1
#> 163 163 b high 1
#> 164 164 b high 0
#> 165 165 b high 1
#> 166 166 b high 1
#> 167 167 b high 1
#> 168 168 b high 1
#> 169 169 b high 1
#> 170 170 b high 1
#> 171 171 b high 1
#> 172 172 b high 1
#> 173 173 b high 1
#> 174 174 b high 1
#> 175 175 b high 1
#> 176 176 b high 1
#> 177 177 b high 1
#> 178 178 b high 1
#> 179 179 b high 1
#> 180 180 b high 0
#> 181 181 b high 1
#> 182 182 b high 1
#> 183 183 b high 1
#> 184 184 b high 1
#> 185 185 b high 0
#> 186 186 b high 1
#> 187 187 b high 1
#> 188 188 b high 1
#> 189 189 b high 1
#> 190 190 b high 1
#> 191 191 b high 1
#> 192 192 b high 1
#> 193 193 b high 1
#> 194 194 b high 1
#> 195 195 b high 1
#> 196 196 b high 1
#> 197 197 b high 1
#> 198 198 b high 1
#> 199 199 b high 0
#> 200 200 b high 1
#> 201 201 c high 1
#> 202 202 c high 1
#> 203 203 c high 1
#> 204 204 c high 0
#> 205 205 c high 1
#> 206 206 c high 1
#> 207 207 c high 0
#> 208 208 c high 0
#> 209 209 c high 1
#> 210 210 c high 1
#> 211 211 c high 0
#> 212 212 c high 1
#> 213 213 c high 1
#> 214 214 c high 1
#> 215 215 c high 0
#> 216 216 c high 1
#> 217 217 c high 1
#> 218 218 c high 1
#> 219 219 c high 1
#> 220 220 c high 1
#> 221 221 c high 1
#> 222 222 c high 1
#> 223 223 c high 1
#> 224 224 c high 1
#> 225 225 c high 1
#> 226 226 c high 0
#> 227 227 c high 1
#> 228 228 c high 1
#> 229 229 c high 0
#> 230 230 c high 1
#> 231 231 c high 1
#> 232 232 c high 1
#> 233 233 c high 1
#> 234 234 c high 1
#> 235 235 c high 1
#> 236 236 c high 1
#> 237 237 c high 1
#> 238 238 c high 1
#> 239 239 c high 1
#> 240 240 c high 1

# groups can be unequal:
design <- list( A=c("low","high"))
GRP( design, props = c(0.1,  0.9), n = c(5, 35) )
#>    id    A s
#> 1   1  low 0
#> 2   2  low 0
#> 3   3  low 0
#> 4   4  low 0
#> 5   5  low 1
#> 6   6 high 0
#> 7   7 high 0
#> 8   8 high 1
#> 9   9 high 1
#> 10 10 high 1
#> 11 11 high 1
#> 12 12 high 1
#> 13 13 high 1
#> 14 14 high 1
#> 15 15 high 1
#> 16 16 high 1
#> 17 17 high 1
#> 18 18 high 1
#> 19 19 high 1
#> 20 20 high 1
#> 21 21 high 1
#> 22 22 high 1
#> 23 23 high 1
#> 24 24 high 1
#> 25 25 high 1
#> 26 26 high 1
#> 27 27 high 1
#> 28 28 high 0
#> 29 29 high 1
#> 30 30 high 1
#> 31 31 high 1
#> 32 32 high 1
#> 33 33 high 0
#> 34 34 high 1
#> 35 35 high 1
#> 36 36 high 1
#> 37 37 high 1
#> 38 38 high 1
#> 39 39 high 1
#> 40 40 high 1

# Finally, repeated-measures can be generated
# but note that correlated scores cannot be generated with `GRP()`
wsDesign = list( Moment = c("pre", "post") )
GRP( WSDesign=wsDesign, props = c(0.1,  0.9), n = 10 )
#>    id s.pre s.post
#> 1   1     0      1
#> 2   2     0      1
#> 3   3     0      1
#> 4   4     0      0
#> 5   5     0      1
#> 6   6     0      1
#> 7   7     0      1
#> 8   8     0      1
#> 9   9     0      1
#> 10 10     1      1

# This last one has three factors, for a total of 3 x 2 x 2 = 12 cells
design <- list( A=letters[1:3], B = c("low","high"), C = c("cat","dog"))
GRP( design, n = 30, props = rep(0.5,12) )
#>      id A    B   C s
#> 1     1 a  low cat 1
#> 2     2 a  low cat 1
#> 3     3 a  low cat 1
#> 4     4 a  low cat 1
#> 5     5 a  low cat 1
#> 6     6 a  low cat 1
#> 7     7 a  low cat 1
#> 8     8 a  low cat 0
#> 9     9 a  low cat 0
#> 10   10 a  low cat 1
#> 11   11 a  low cat 0
#> 12   12 a  low cat 0
#> 13   13 a  low cat 0
#> 14   14 a  low cat 1
#> 15   15 a  low cat 1
#> 16   16 a  low cat 0
#> 17   17 a  low cat 0
#> 18   18 a  low cat 1
#> 19   19 a  low cat 1
#> 20   20 a  low cat 1
#> 21   21 a  low cat 1
#> 22   22 a  low cat 1
#> 23   23 a  low cat 1
#> 24   24 a  low cat 1
#> 25   25 a  low cat 0
#> 26   26 a  low cat 0
#> 27   27 a  low cat 1
#> 28   28 a  low cat 0
#> 29   29 a  low cat 1
#> 30   30 a  low cat 1
#> 31   31 b  low cat 1
#> 32   32 b  low cat 0
#> 33   33 b  low cat 1
#> 34   34 b  low cat 1
#> 35   35 b  low cat 0
#> 36   36 b  low cat 0
#> 37   37 b  low cat 0
#> 38   38 b  low cat 1
#> 39   39 b  low cat 0
#> 40   40 b  low cat 1
#> 41   41 b  low cat 0
#> 42   42 b  low cat 0
#> 43   43 b  low cat 1
#> 44   44 b  low cat 0
#> 45   45 b  low cat 0
#> 46   46 b  low cat 0
#> 47   47 b  low cat 1
#> 48   48 b  low cat 1
#> 49   49 b  low cat 1
#> 50   50 b  low cat 0
#> 51   51 b  low cat 1
#> 52   52 b  low cat 1
#> 53   53 b  low cat 1
#> 54   54 b  low cat 1
#> 55   55 b  low cat 0
#> 56   56 b  low cat 1
#> 57   57 b  low cat 0
#> 58   58 b  low cat 1
#> 59   59 b  low cat 0
#> 60   60 b  low cat 1
#> 61   61 c  low cat 0
#> 62   62 c  low cat 1
#> 63   63 c  low cat 0
#> 64   64 c  low cat 0
#> 65   65 c  low cat 1
#> 66   66 c  low cat 0
#> 67   67 c  low cat 1
#> 68   68 c  low cat 1
#> 69   69 c  low cat 1
#> 70   70 c  low cat 1
#> 71   71 c  low cat 0
#> 72   72 c  low cat 1
#> 73   73 c  low cat 1
#> 74   74 c  low cat 0
#> 75   75 c  low cat 1
#> 76   76 c  low cat 0
#> 77   77 c  low cat 1
#> 78   78 c  low cat 1
#> 79   79 c  low cat 1
#> 80   80 c  low cat 0
#> 81   81 c  low cat 0
#> 82   82 c  low cat 0
#> 83   83 c  low cat 1
#> 84   84 c  low cat 0
#> 85   85 c  low cat 0
#> 86   86 c  low cat 0
#> 87   87 c  low cat 0
#> 88   88 c  low cat 0
#> 89   89 c  low cat 1
#> 90   90 c  low cat 0
#> 91   91 a high cat 1
#> 92   92 a high cat 1
#> 93   93 a high cat 0
#> 94   94 a high cat 0
#> 95   95 a high cat 0
#> 96   96 a high cat 0
#> 97   97 a high cat 1
#> 98   98 a high cat 0
#> 99   99 a high cat 0
#> 100 100 a high cat 1
#> 101 101 a high cat 1
#> 102 102 a high cat 1
#> 103 103 a high cat 1
#> 104 104 a high cat 1
#> 105 105 a high cat 1
#> 106 106 a high cat 0
#> 107 107 a high cat 0
#> 108 108 a high cat 1
#> 109 109 a high cat 0
#> 110 110 a high cat 1
#> 111 111 a high cat 0
#> 112 112 a high cat 1
#> 113 113 a high cat 0
#> 114 114 a high cat 1
#> 115 115 a high cat 0
#> 116 116 a high cat 0
#> 117 117 a high cat 1
#> 118 118 a high cat 0
#> 119 119 a high cat 1
#> 120 120 a high cat 0
#> 121 121 b high cat 1
#> 122 122 b high cat 1
#> 123 123 b high cat 1
#> 124 124 b high cat 1
#> 125 125 b high cat 1
#> 126 126 b high cat 0
#> 127 127 b high cat 0
#> 128 128 b high cat 1
#> 129 129 b high cat 1
#> 130 130 b high cat 0
#> 131 131 b high cat 1
#> 132 132 b high cat 0
#> 133 133 b high cat 1
#> 134 134 b high cat 1
#> 135 135 b high cat 1
#> 136 136 b high cat 1
#> 137 137 b high cat 0
#> 138 138 b high cat 1
#> 139 139 b high cat 0
#> 140 140 b high cat 0
#> 141 141 b high cat 0
#> 142 142 b high cat 0
#> 143 143 b high cat 1
#> 144 144 b high cat 0
#> 145 145 b high cat 0
#> 146 146 b high cat 1
#> 147 147 b high cat 1
#> 148 148 b high cat 1
#> 149 149 b high cat 0
#> 150 150 b high cat 1
#> 151 151 c high cat 0
#> 152 152 c high cat 0
#> 153 153 c high cat 0
#> 154 154 c high cat 1
#> 155 155 c high cat 1
#> 156 156 c high cat 1
#> 157 157 c high cat 0
#> 158 158 c high cat 1
#> 159 159 c high cat 1
#> 160 160 c high cat 0
#> 161 161 c high cat 0
#> 162 162 c high cat 0
#> 163 163 c high cat 0
#> 164 164 c high cat 0
#> 165 165 c high cat 0
#> 166 166 c high cat 0
#> 167 167 c high cat 1
#> 168 168 c high cat 1
#> 169 169 c high cat 1
#> 170 170 c high cat 0
#> 171 171 c high cat 0
#> 172 172 c high cat 0
#> 173 173 c high cat 0
#> 174 174 c high cat 1
#> 175 175 c high cat 0
#> 176 176 c high cat 1
#> 177 177 c high cat 0
#> 178 178 c high cat 0
#> 179 179 c high cat 1
#> 180 180 c high cat 1
#> 181 181 a  low dog 1
#> 182 182 a  low dog 0
#> 183 183 a  low dog 1
#> 184 184 a  low dog 0
#> 185 185 a  low dog 0
#> 186 186 a  low dog 0
#> 187 187 a  low dog 0
#> 188 188 a  low dog 1
#> 189 189 a  low dog 1
#> 190 190 a  low dog 0
#> 191 191 a  low dog 0
#> 192 192 a  low dog 1
#> 193 193 a  low dog 1
#> 194 194 a  low dog 0
#> 195 195 a  low dog 0
#> 196 196 a  low dog 1
#> 197 197 a  low dog 1
#> 198 198 a  low dog 1
#> 199 199 a  low dog 0
#> 200 200 a  low dog 0
#> 201 201 a  low dog 1
#> 202 202 a  low dog 1
#> 203 203 a  low dog 1
#> 204 204 a  low dog 1
#> 205 205 a  low dog 1
#> 206 206 a  low dog 1
#> 207 207 a  low dog 1
#> 208 208 a  low dog 0
#> 209 209 a  low dog 0
#> 210 210 a  low dog 1
#> 211 211 b  low dog 0
#> 212 212 b  low dog 0
#> 213 213 b  low dog 0
#> 214 214 b  low dog 1
#> 215 215 b  low dog 1
#> 216 216 b  low dog 0
#> 217 217 b  low dog 0
#> 218 218 b  low dog 0
#> 219 219 b  low dog 0
#> 220 220 b  low dog 1
#> 221 221 b  low dog 0
#> 222 222 b  low dog 1
#> 223 223 b  low dog 0
#> 224 224 b  low dog 1
#> 225 225 b  low dog 0
#> 226 226 b  low dog 0
#> 227 227 b  low dog 0
#> 228 228 b  low dog 1
#> 229 229 b  low dog 0
#> 230 230 b  low dog 0
#> 231 231 b  low dog 0
#> 232 232 b  low dog 0
#> 233 233 b  low dog 0
#> 234 234 b  low dog 0
#> 235 235 b  low dog 0
#> 236 236 b  low dog 0
#> 237 237 b  low dog 0
#> 238 238 b  low dog 0
#> 239 239 b  low dog 1
#> 240 240 b  low dog 0
#> 241 241 c  low dog 0
#> 242 242 c  low dog 1
#> 243 243 c  low dog 1
#> 244 244 c  low dog 0
#> 245 245 c  low dog 1
#> 246 246 c  low dog 0
#> 247 247 c  low dog 0
#> 248 248 c  low dog 0
#> 249 249 c  low dog 0
#> 250 250 c  low dog 1
#> 251 251 c  low dog 1
#> 252 252 c  low dog 0
#> 253 253 c  low dog 1
#> 254 254 c  low dog 1
#> 255 255 c  low dog 1
#> 256 256 c  low dog 0
#> 257 257 c  low dog 0
#> 258 258 c  low dog 0
#> 259 259 c  low dog 0
#> 260 260 c  low dog 1
#> 261 261 c  low dog 0
#> 262 262 c  low dog 0
#> 263 263 c  low dog 0
#> 264 264 c  low dog 0
#> 265 265 c  low dog 0
#> 266 266 c  low dog 1
#> 267 267 c  low dog 1
#> 268 268 c  low dog 1
#> 269 269 c  low dog 0
#> 270 270 c  low dog 1
#> 271 271 a high dog 0
#> 272 272 a high dog 0
#> 273 273 a high dog 1
#> 274 274 a high dog 1
#> 275 275 a high dog 1
#> 276 276 a high dog 0
#> 277 277 a high dog 1
#> 278 278 a high dog 0
#> 279 279 a high dog 1
#> 280 280 a high dog 1
#> 281 281 a high dog 0
#> 282 282 a high dog 0
#> 283 283 a high dog 0
#> 284 284 a high dog 0
#> 285 285 a high dog 0
#> 286 286 a high dog 1
#> 287 287 a high dog 1
#> 288 288 a high dog 0
#> 289 289 a high dog 1
#> 290 290 a high dog 1
#> 291 291 a high dog 1
#> 292 292 a high dog 1
#> 293 293 a high dog 0
#> 294 294 a high dog 1
#> 295 295 a high dog 0
#> 296 296 a high dog 0
#> 297 297 a high dog 1
#> 298 298 a high dog 1
#> 299 299 a high dog 0
#> 300 300 a high dog 1
#> 301 301 b high dog 0
#> 302 302 b high dog 0
#> 303 303 b high dog 0
#> 304 304 b high dog 0
#> 305 305 b high dog 0
#> 306 306 b high dog 1
#> 307 307 b high dog 1
#> 308 308 b high dog 1
#> 309 309 b high dog 1
#> 310 310 b high dog 1
#> 311 311 b high dog 0
#> 312 312 b high dog 1
#> 313 313 b high dog 1
#> 314 314 b high dog 1
#> 315 315 b high dog 1
#> 316 316 b high dog 1
#> 317 317 b high dog 0
#> 318 318 b high dog 1
#> 319 319 b high dog 1
#> 320 320 b high dog 0
#> 321 321 b high dog 1
#> 322 322 b high dog 1
#> 323 323 b high dog 0
#> 324 324 b high dog 1
#> 325 325 b high dog 1
#> 326 326 b high dog 1
#> 327 327 b high dog 1
#> 328 328 b high dog 1
#> 329 329 b high dog 0
#> 330 330 b high dog 0
#> 331 331 c high dog 0
#> 332 332 c high dog 0
#> 333 333 c high dog 1
#> 334 334 c high dog 0
#> 335 335 c high dog 0
#> 336 336 c high dog 0
#> 337 337 c high dog 0
#> 338 338 c high dog 1
#> 339 339 c high dog 1
#> 340 340 c high dog 0
#> 341 341 c high dog 0
#> 342 342 c high dog 1
#> 343 343 c high dog 0
#> 344 344 c high dog 1
#> 345 345 c high dog 1
#> 346 346 c high dog 0
#> 347 347 c high dog 1
#> 348 348 c high dog 0
#> 349 349 c high dog 1
#> 350 350 c high dog 1
#> 351 351 c high dog 1
#> 352 352 c high dog 1
#> 353 353 c high dog 1
#> 354 354 c high dog 1
#> 355 355 c high dog 0
#> 356 356 c high dog 1
#> 357 357 c high dog 1
#> 358 358 c high dog 0
#> 359 359 c high dog 0
#> 360 360 c high dog 0

# To specify unequal probabilities, use
design  <- list( A=letters[1:3], B = c("low","high"))
expProp <- c(.05, .05, .35, .35, .10, .10 )
GRP( design, n = 30, props=expProp )
#>      id A    B s
#> 1     1 a  low 0
#> 2     2 a  low 0
#> 3     3 a  low 0
#> 4     4 a  low 0
#> 5     5 a  low 0
#> 6     6 a  low 0
#> 7     7 a  low 0
#> 8     8 a  low 0
#> 9     9 a  low 0
#> 10   10 a  low 1
#> 11   11 a  low 0
#> 12   12 a  low 0
#> 13   13 a  low 0
#> 14   14 a  low 0
#> 15   15 a  low 0
#> 16   16 a  low 0
#> 17   17 a  low 0
#> 18   18 a  low 0
#> 19   19 a  low 0
#> 20   20 a  low 0
#> 21   21 a  low 0
#> 22   22 a  low 0
#> 23   23 a  low 0
#> 24   24 a  low 0
#> 25   25 a  low 0
#> 26   26 a  low 0
#> 27   27 a  low 0
#> 28   28 a  low 0
#> 29   29 a  low 0
#> 30   30 a  low 0
#> 31   31 b  low 0
#> 32   32 b  low 0
#> 33   33 b  low 0
#> 34   34 b  low 0
#> 35   35 b  low 0
#> 36   36 b  low 0
#> 37   37 b  low 1
#> 38   38 b  low 0
#> 39   39 b  low 0
#> 40   40 b  low 0
#> 41   41 b  low 0
#> 42   42 b  low 0
#> 43   43 b  low 0
#> 44   44 b  low 0
#> 45   45 b  low 0
#> 46   46 b  low 0
#> 47   47 b  low 0
#> 48   48 b  low 0
#> 49   49 b  low 0
#> 50   50 b  low 0
#> 51   51 b  low 0
#> 52   52 b  low 0
#> 53   53 b  low 0
#> 54   54 b  low 1
#> 55   55 b  low 0
#> 56   56 b  low 0
#> 57   57 b  low 0
#> 58   58 b  low 0
#> 59   59 b  low 0
#> 60   60 b  low 0
#> 61   61 c  low 1
#> 62   62 c  low 0
#> 63   63 c  low 0
#> 64   64 c  low 1
#> 65   65 c  low 0
#> 66   66 c  low 1
#> 67   67 c  low 0
#> 68   68 c  low 0
#> 69   69 c  low 0
#> 70   70 c  low 1
#> 71   71 c  low 1
#> 72   72 c  low 0
#> 73   73 c  low 0
#> 74   74 c  low 0
#> 75   75 c  low 0
#> 76   76 c  low 0
#> 77   77 c  low 1
#> 78   78 c  low 0
#> 79   79 c  low 0
#> 80   80 c  low 0
#> 81   81 c  low 0
#> 82   82 c  low 0
#> 83   83 c  low 0
#> 84   84 c  low 0
#> 85   85 c  low 1
#> 86   86 c  low 0
#> 87   87 c  low 1
#> 88   88 c  low 0
#> 89   89 c  low 0
#> 90   90 c  low 0
#> 91   91 a high 0
#> 92   92 a high 0
#> 93   93 a high 1
#> 94   94 a high 0
#> 95   95 a high 0
#> 96   96 a high 0
#> 97   97 a high 0
#> 98   98 a high 0
#> 99   99 a high 0
#> 100 100 a high 0
#> 101 101 a high 1
#> 102 102 a high 0
#> 103 103 a high 0
#> 104 104 a high 1
#> 105 105 a high 1
#> 106 106 a high 0
#> 107 107 a high 0
#> 108 108 a high 1
#> 109 109 a high 0
#> 110 110 a high 1
#> 111 111 a high 0
#> 112 112 a high 0
#> 113 113 a high 0
#> 114 114 a high 1
#> 115 115 a high 1
#> 116 116 a high 0
#> 117 117 a high 1
#> 118 118 a high 0
#> 119 119 a high 0
#> 120 120 a high 0
#> 121 121 b high 0
#> 122 122 b high 0
#> 123 123 b high 0
#> 124 124 b high 0
#> 125 125 b high 0
#> 126 126 b high 0
#> 127 127 b high 0
#> 128 128 b high 0
#> 129 129 b high 0
#> 130 130 b high 0
#> 131 131 b high 0
#> 132 132 b high 1
#> 133 133 b high 0
#> 134 134 b high 0
#> 135 135 b high 0
#> 136 136 b high 0
#> 137 137 b high 0
#> 138 138 b high 0
#> 139 139 b high 0
#> 140 140 b high 1
#> 141 141 b high 0
#> 142 142 b high 0
#> 143 143 b high 0
#> 144 144 b high 1
#> 145 145 b high 0
#> 146 146 b high 0
#> 147 147 b high 0
#> 148 148 b high 0
#> 149 149 b high 0
#> 150 150 b high 0
#> 151 151 c high 0
#> 152 152 c high 0
#> 153 153 c high 0
#> 154 154 c high 0
#> 155 155 c high 0
#> 156 156 c high 0
#> 157 157 c high 0
#> 158 158 c high 0
#> 159 159 c high 0
#> 160 160 c high 0
#> 161 161 c high 0
#> 162 162 c high 1
#> 163 163 c high 0
#> 164 164 c high 0
#> 165 165 c high 0
#> 166 166 c high 1
#> 167 167 c high 0
#> 168 168 c high 0
#> 169 169 c high 0
#> 170 170 c high 0
#> 171 171 c high 0
#> 172 172 c high 0
#> 173 173 c high 0
#> 174 174 c high 0
#> 175 175 c high 0
#> 176 176 c high 0
#> 177 177 c high 0
#> 178 178 c high 0
#> 179 179 c high 0
#> 180 180 c high 0

# The name of the column containing the proportions can be changed
GRP( design, n=30, props=expProp, sname="patate")
#>      id A    B patate
#> 1     1 a  low      0
#> 2     2 a  low      0
#> 3     3 a  low      0
#> 4     4 a  low      0
#> 5     5 a  low      0
#> 6     6 a  low      0
#> 7     7 a  low      0
#> 8     8 a  low      0
#> 9     9 a  low      0
#> 10   10 a  low      0
#> 11   11 a  low      0
#> 12   12 a  low      0
#> 13   13 a  low      0
#> 14   14 a  low      0
#> 15   15 a  low      0
#> 16   16 a  low      0
#> 17   17 a  low      0
#> 18   18 a  low      0
#> 19   19 a  low      0
#> 20   20 a  low      1
#> 21   21 a  low      0
#> 22   22 a  low      0
#> 23   23 a  low      1
#> 24   24 a  low      0
#> 25   25 a  low      0
#> 26   26 a  low      0
#> 27   27 a  low      0
#> 28   28 a  low      0
#> 29   29 a  low      0
#> 30   30 a  low      0
#> 31   31 b  low      0
#> 32   32 b  low      0
#> 33   33 b  low      0
#> 34   34 b  low      0
#> 35   35 b  low      0
#> 36   36 b  low      0
#> 37   37 b  low      0
#> 38   38 b  low      0
#> 39   39 b  low      0
#> 40   40 b  low      0
#> 41   41 b  low      0
#> 42   42 b  low      1
#> 43   43 b  low      0
#> 44   44 b  low      0
#> 45   45 b  low      0
#> 46   46 b  low      0
#> 47   47 b  low      1
#> 48   48 b  low      0
#> 49   49 b  low      0
#> 50   50 b  low      0
#> 51   51 b  low      0
#> 52   52 b  low      0
#> 53   53 b  low      0
#> 54   54 b  low      0
#> 55   55 b  low      0
#> 56   56 b  low      0
#> 57   57 b  low      0
#> 58   58 b  low      0
#> 59   59 b  low      0
#> 60   60 b  low      0
#> 61   61 c  low      0
#> 62   62 c  low      0
#> 63   63 c  low      0
#> 64   64 c  low      1
#> 65   65 c  low      1
#> 66   66 c  low      1
#> 67   67 c  low      1
#> 68   68 c  low      0
#> 69   69 c  low      1
#> 70   70 c  low      0
#> 71   71 c  low      1
#> 72   72 c  low      0
#> 73   73 c  low      0
#> 74   74 c  low      0
#> 75   75 c  low      1
#> 76   76 c  low      0
#> 77   77 c  low      0
#> 78   78 c  low      0
#> 79   79 c  low      0
#> 80   80 c  low      0
#> 81   81 c  low      0
#> 82   82 c  low      1
#> 83   83 c  low      0
#> 84   84 c  low      0
#> 85   85 c  low      0
#> 86   86 c  low      0
#> 87   87 c  low      0
#> 88   88 c  low      1
#> 89   89 c  low      0
#> 90   90 c  low      0
#> 91   91 a high      0
#> 92   92 a high      0
#> 93   93 a high      0
#> 94   94 a high      0
#> 95   95 a high      0
#> 96   96 a high      1
#> 97   97 a high      1
#> 98   98 a high      0
#> 99   99 a high      1
#> 100 100 a high      0
#> 101 101 a high      1
#> 102 102 a high      0
#> 103 103 a high      1
#> 104 104 a high      1
#> 105 105 a high      1
#> 106 106 a high      0
#> 107 107 a high      0
#> 108 108 a high      0
#> 109 109 a high      0
#> 110 110 a high      1
#> 111 111 a high      1
#> 112 112 a high      0
#> 113 113 a high      0
#> 114 114 a high      0
#> 115 115 a high      1
#> 116 116 a high      0
#> 117 117 a high      0
#> 118 118 a high      0
#> 119 119 a high      0
#> 120 120 a high      1
#> 121 121 b high      1
#> 122 122 b high      0
#> 123 123 b high      0
#> 124 124 b high      1
#> 125 125 b high      0
#> 126 126 b high      0
#> 127 127 b high      0
#> 128 128 b high      0
#> 129 129 b high      0
#> 130 130 b high      0
#> 131 131 b high      0
#> 132 132 b high      0
#> 133 133 b high      0
#> 134 134 b high      0
#> 135 135 b high      1
#> 136 136 b high      0
#> 137 137 b high      0
#> 138 138 b high      0
#> 139 139 b high      0
#> 140 140 b high      0
#> 141 141 b high      0
#> 142 142 b high      0
#> 143 143 b high      0
#> 144 144 b high      0
#> 145 145 b high      0
#> 146 146 b high      0
#> 147 147 b high      0
#> 148 148 b high      0
#> 149 149 b high      0
#> 150 150 b high      0
#> 151 151 c high      0
#> 152 152 c high      0
#> 153 153 c high      1
#> 154 154 c high      0
#> 155 155 c high      0
#> 156 156 c high      0
#> 157 157 c high      1
#> 158 158 c high      0
#> 159 159 c high      0
#> 160 160 c high      0
#> 161 161 c high      0
#> 162 162 c high      0
#> 163 163 c high      1
#> 164 164 c high      0
#> 165 165 c high      0
#> 166 166 c high      0
#> 167 167 c high      0
#> 168 168 c high      0
#> 169 169 c high      0
#> 170 170 c high      0
#> 171 171 c high      0
#> 172 172 c high      0
#> 173 173 c high      0
#> 174 174 c high      0
#> 175 175 c high      0
#> 176 176 c high      0
#> 177 177 c high      0
#> 178 178 c high      0
#> 179 179 c high      0
#> 180 180 c high      0

# Examples of use of rBernoulli
t <- rBernoulli(50, 0.1)
mean(t)
#> [1] 0.14